Mixture Inner Product Spaces and Their Application to Functional Data Analysis
نویسندگان
چکیده
We introduce the concept of mixture inner product spaces associated with a given separable Hilbert space, which feature an infinite-dimensional mixture of finite-dimensional vector spaces and are dense in the underlying Hilbert space. Any Hilbert valued random element can be arbitrarily closely approximated by mixture inner product space valued random elements. While this concept can be applied to data in any infinite-dimensional Hilbert space, the case of functional data that are random elements in the L space of square integrable functions is of special interest. For functional data, mixture inner product spaces provide a new perspective, where each realization of the underlying stochastic process falls into one of the component spaces and is represented by a finite number of basis functions, the number of which corresponds to the dimension of the component space. In the mixture representation of functional data, the number of included mixture components used to represent a given random element in L is specifically adapted to each random trajectory and may be arbitrarily large. Key benefits of this novel approach are, first, that it provides a new perspective on the construction of a probability density in function space under mild regularity conditions, and second, that individual trajectories possess a trajectory-specific dimension that corresponds to a latent random variable, making it possible to use a larger number of components for less smooth and a smaller number for smoother trajectories. This enables flexible and parsimonious modeling of heterogeneous trajectory shapes. We establish estimation consistency of the functional mixture density and introduce an algorithm for fitting the functional mixture model based on a modified expectation-maximization algorithm. Simulations confirm that in comparison to traditional functional principal component analysis the proposed method achieves similar or better data recovery while using fewer components on average. Its practical merits are also demonstrated in an analysis of egg-laying trajectories for medflies.
منابع مشابه
$C^{*}$-semi-inner product spaces
In this paper, we introduce a generalization of Hilbert $C^*$-modules which are pre-Finsler modules, namely, $C^{*}$-semi-inner product spaces. Some properties and results of such spaces are investigated, specially the orthogonality in these spaces will be considered. We then study bounded linear operators on $C^{*}$-semi-inner product spaces.
متن کاملAtomic Systems in 2-inner Product Spaces
In this paper, we introduce the concept of family of local atoms in a 2-inner product space and then this concept is generalized to an atomic system. Besides, a characterization of an atomic system lead to obtain a new frame. Actually this frame is a generalization of previous works.
متن کاملNORM AND INNER PRODUCT ON FUZZY LINEAR SPACES OVER FUZZY FIELDS
In this paper, we introduce the concepts of norm and inner prod- uct on fuzzy linear spaces over fuzzy elds and discuss some fundamental properties.
متن کاملA Comparative Study of Fuzzy Inner Product Spaces
In the present paper, we investigate a connection between two fuzzy inner product one of which arises from Felbin's fuzzy norm and the other is based on Bag and Samanta's fuzzy norm. Also we show that, considering a fuzzy inner product space, how one can construct another kind of fuzzy inner product on this space.
متن کاملFrames in 2-inner Product Spaces
In this paper, we introduce the notion of a frame in a 2- inner product space and give some characterizations. These frames can be considered as a usual frame in a Hilbert space, so they share many useful properties with frames.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2017